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Abstract:

In this paper, certain path-independent integrals, of relevance in the

presence of cracks, in elastic and inelastic solids are considered. The hyp-

othesized material constitutive properties include: (i) finite and infinit-

esimal elasticity, (it) rate-independent incremental flow theory of elasto-

plasticity, and (iii) rate-sensit ivk, behaviour including elasto-viscoplasticity,

and creep. In each case, finite defornitions are considered, along with the

effects of body forces, material acehlration, and arbitrary traction/displace-

ment conditions on the crack-face-. A4. the phsical interpretations of each

of the inte-ral. either in terms of %r, k-t L, energy release rates or simply

energy-rite differences in two compa.ri son cracked-bdies are explored. Several

differences between the results in the present work and those currently con-

sidered well established in literaturt ire pointed out and discussed.

* Regents' Professor of Mechanics
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Irtroduction:

Since the pioneering work of Eshelby [1], and independent discovery of

Rice [2), innumerable number of papers have appeared in literature concerning

path-independent integrals (for the most part however, concerning the so-

called J-integral) and their application to mechanics of fracture. No attempt

is made herein at a comprehensive survey of this still burgeoning literature.

Of particular relevance to the present work are the important studies, on con-

servation laws in finite and infinitesimal elasticity, by Knowles and Sternberg

[3), and the interpretation of these in the context of the mechanics of cracks

and notches in 2-dimensional bodies by Budiansky and Rice [4]. It is noted that

the studies in [1-4] are restricted to elasto-statics, and the crack-extension

considered, if any, is of quasi-static nature i.e., inertia is considered neg-

li-ible. As is often noted in literature, the so-called J-integral in elastos-

tatic crack mechanics is in fact one of the components of a vector-integral,

and its relevance is in the context of incipient, self-similar, crack-extension.

Eventhou~h the so-called 3-integral [1,2) was intended to be applicable

to finite or infinitesimal elasticity, its use had been extended, in several

w(rks in the past twelve years, far beyond the range of its apparent theo-

retical validity. Invoking "deformation theory of plasticity" and/or "prop-

ortional loading", it was used in the context of initiation of ".Mode I" growth

of a crack in an elasto-plastic body. A wide class of literature has also

grown around the concept of the so-called "J test". Rice [5], in an article

which appeared in 1976, and which is perhaps accurately representative even

today, succinctly summarized a wide body of literature pertaining to the use

of J in the context of elasto-plasticity. Later, based more or less on

empirical reasoning, J and the rate of change of J with crack length ("dJ/da")

were postulated to be "valid" parameters characterizing even stable crack
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growth in ductile materials [6], wherein crack-growth necessarily implies un-

loading. However, the fundamental concept of a pat independent integral and

its physical meaning, if any, in the context of an (even rate-independent) in-

cremental flow theory of plasticity yet remains to be explored.

In the class of problems generally characterized as belonging to the

domain of "dynamic fracture mechanics", integral relations quantifying the rate

of energy-release to a propagating crack-tip in a plane linear elastic body

undergoing infinitesimal deformation were presented by Freund [7,81, who also

succinctly summarized the pertinent work of Atkinson, Eshelby, Achenbach, Sih,

and others. The path-independency, if any, of such integrals for energy-release

rates even in linear elastodynamic crack propagation yet remain to be understood.

To the author's knowledge, no work has been reported concerning path-

independent integrals, which m.ay characterize the severity of the conditions near

the crack-tip, in materials cha 'acterized by rate-sensitive inelastic con-

stitutive laws, such as, for i'-;tance, visooplasticity and creep. However, in

the case of pure steady-state reep charaLterized by a power law (of the type

c-on), an integral j (or c*) ich is entirely similar to the J[l,2] for pure

power-law hardening materials (e~on) was introduced by Goldman and Hutchinson [9]

and Landes and Begley [101, based on the observed similarity of the constitutive

laws in the respective cases (i.e., 6 instead of c, etc.). However, the

physical interpretation, if any, of c* appears not to have been fully explored.

The present work represents a modest effort at a re-examination of path-

independent integrals, and their relevance to mechanics of cracks, in elastic

as well as inelastic solids. The postulated material behaviour includes the

cases of finite elasticity, rate-independent incremental flow theory of plas-

ticity, and rate-sensitive behaviour such as visco-plasticity and creep. In
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each case finite deformations are considered, along with the effects of body

forces, material acceleration, and arbitrary traction/displacement con-

ditions on the crack-face.

We start by considering the case of finite elasticity and attempt to

generalize the conservation laws given by Knowles and Sternberg [3] to the case

when body forces, inertia, knd arbitrary crack-face conditions are accounted for. From

these conservation laws, we derive a path-independent vector integral of rele-

vance to fracture-mechanics. In this process, we re-examine the fundamental

notion of "path-independence", and the attendant mathematical and physical

reasoning, as originally propounded by Rice [2], and the results presented

later by Budiansky and Rice [4]. We specialize the obtained results to the

case of linear elastodynamic crack-propagation. To understand the physical

meaning of the "path-independent" integral vector, we make an 1idependent study

of the expression for the rate of energy-release in elastodynamir crack-propa-

gation. Several differences between the results in the present lork and those

currently considered well-established in literature are noted aid discusses.

In the second part of the paper, we consider conservatior laws, and the

attendant path-independent integrals, in the incremental theory of finite-

deformation, rate-independent, classical elastoplasticity. Once again we

include body forces, inertia, and general crack-face conditions in the discussion.

Also, we explore the physical meaning of the path-independent integral increm-

entaL-vector, in the case of elasto-plasticity.

In the final part of the paper we consider finite strain rate-sensitive

inelasticity characterized by a elasto-viscoplastic constitutive law of the

type proposed by Perzyna LII1. We itso treat the well-known Norton's power-

law tVpe of steadv state creep as a special case. We point out certain "incre-

mental" integrals, which are: path-independent in a limited sense in the case
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elasto-viscoplastic strains, and strictly path-independent in the presence

of combined elastic and creep strain rates. We explore the physical meaning

of these integrals as well.

Notation:

For convenience to the reader, we summarize the notations employed in

the present as follows:

(-) under symbol denotes a vector

(-) under symbol denotes a second-order tensor

a = A.b implies a = b

C = A.B implies C
i j = Ai.BKj

A:B implies the trace: AiJBij

A = A131 j a second-order tensor in dyadic notation

V a L 3  gradient 6perator

u,Au displacement vector and its increment

t : first Piola-Kirchhoff stress

s : second Piola-Kirchhoff stress

T Cauchy stress

o : Kirchhoff stress

co-rotational rate of Kirchhoff stress

A
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Finite Elasticity:

Consider a solid body with an initial undeformed configuration B and a

3
deformed configuration b. Let the coordinates of a point P in B be J, with

primary base vectors Gj. The material particle at P in B is assumed to have

moved to the point p in 'b'. Let 'b' be defined by another set of arbitrary
i

curvilinear spatial coordinates n , or by convected coordinates J, with base

vectors Fi and Zj respectively. Let the vector of displacement of the particle

3
from P to p be u = u G. The deformation gradient tensor F is:

F F 1. 

s :

i
. & G(1)

wherein, use has been made of the dyadic notation. In terms of u, we can write:

L K L L K
F GKGL = (6K+u, ) G G E, (P) + e(2

where I(P) is the identity (metric) tensor at P, and ( )K denotes a covariant

derivative w.r.t. K at P. We see that the displacement gradient tensor e is:

L K
uK GG . (3)

Let t be the tensor of true or Cauchy stress at p, which measures tractions on

an oriented surface (dan) at p. If the image of (dan) in the undeformed

configuration is (dAN) at P, we define the first and second Piola-Kirchhoff

stress tensors, denoted here by t and s respectively, as:

W (AN) t = dan/ . (4)

(dAN) . s = (dan) . (T.F - T) (5)

where () denotes an inverse of a tensor, and ( )T denotes a transpose.

Using the geometrical relation

(dan) J(daN) F- 1  (6)
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where J is the absolute determinant of F (or the determinant of the matrix

[FL 1]). Eqs. (4) and (5) lead to:

-1 --
t = JF .T =F .o (7)

F 1  -. -T -- T
s = - * . F =F a.FT t - (8)

where, o = JT is the Kirchhoff stress.

Noting that:

F = (F).Gjz - Gg Gi g (9)

and

T.gj = L (10)

we have:

t 1 . n K* "G
n Jf L

-- .n._ =JTK.L (la)

and

s= - -OLG G (1b)
a rm nn -J-L

Let W be the strain-energv density measured per unit volume at P in B. Then it

is known that:

W 3W T(-F 2-7= t(12)

and

3 2 sW (13)

where C F T.F and y -![C-I(P)l is the Green-Lagrange strain tensor. The

equations of linear (LMB) and angular (AMffi) momentum balance conditions are:

(LM) : 7 t + o (f-a) = 0

or V . [s.FT +o (f-a) 0 (14a,b)

07
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T T

(ANB) F t t F

or s s T (15a,b)

Compatibility:

F I (P) + e (6 L+uLK G C K

or U, u G~uL + K + (16a,b)

Boundary Conditions:

T -
N. t = N. (s.F t tat S (17a)

__ __t

U =u at S* (17b)

For our present purposes, we restate Eq. (17b) in a bit more ambiguous, but

still physicaily meaningful form as:

F =F at S F' (1 7c)

The AMB condition, Eq. (15a) is automatically satisfied provided W is a

frame-indifferent function of F [i.e., for instance, when W is a function

T
of F only through V'(F) = W'(C) =W(F .F)] and t is defined through Eq. (12).

In Eq. (14), , is mass/unit volume at P in B, f are arbitrary body forces

per unit mass, and a is the absolute acceleration of the material particle

[a = a C = (d u /dt ) GL ii GLC1. Likewise, in Eq. (17a), t are prescribed

tractions per unit iindefoizmed area S tof B. If t, s, F, e, u are fields that

satisfy Eqs. (12 through 17), we now show that for any close volume V, which

is free from any singularities or other defects, in the configuration B, the

following identities* are vAid:

I f[V W-V .(t.F)-o (f-a).Fldv +f (N.t-t).'ds +f N.t.(F-P)ds (18)

Cf;.~ C)-,, (-i).FjdV + (NS.F 0t. Fds +jN.s.F T. (F-)dS

4t SF (19)

* [ese represent a generalization of the conservation law given in [31. --o the

case when body forces, inertia, and arbitrary crack-face conditions are considered



I-, the above, we made the assumption that the material is homogeneous, i.e.,

W is a function of the location P in B only by virtue of the fact that F is,

in general, a function of P. The proof of Eq. (18) is evident from the fol-

lowing:

L LW [r3W
V W G ( )3)

- j

L T F~L =L [tMN9NM FK)LG]

= L(t NK K ( KN) L  r: (t N NLtNF)L, M) G (21)FKJLKJ

-G tMN(F ),L (G )(,G.G )' [t(FNMI (20)

L

wher, (he denotes covariant differentiation w.r.t. And,

Vp (t.F) = . FkLtMNFNK, G L

MN K MN L
=(t FNK)I . (tF

MN M L (1
=(t MF'NL't F NLm)G 21

ButFNLM =(NL~+ N,L~ It ~N, L M = uN, L

(1 u N,M F M(F),L (22)

since, the metric tensor behaves as a constant during covariant differentiation.

Thus, equation (21) can be written as:

MN MN L
V . (t.F) = (t F +t F )G

T L= (V~ Pt) . F + [t :(F),~ L (23)

Upon using Eqs. (20), (23), (14a), (17ai), and (17c), the validity of Eq. (18)

T T
is immdiately evident. When it is noted that t = s.F , and F .F=C, the proof

of Eq. (19) is apparent. An indepindent proof, follows from:

W s ( ), ] 
= (s _L: f(FT) F + F . (F) ,}

SL L L...



L T L T T
( s [(F) F)I} G (s.F) (FT), }. (24)

Since s is a symmetric tensor. Further

V .s.C] = )] . F + (s.F (F) C
=P (s .G

L • ( .

T T T L
[V p (s.F)] F + (s.F) (FT), L C (25)

From (24), (25), (14b), (17a) and (17c), the validity of Eq. (19) can be noted.

Using the Green-Gauss theorem, we can write Eqs. (18) and (19) in the

form:

0 [NW -N. (t.F)] ds - f (f-a) Fdv + f (N.t-t) . Fds- f V .. . . 0 -- -
t

+ J N. t . (F-F) ds (26)

F

fV NW- N. (s.C) - , 0(f-a).FdV + fs (N.t-t) . Fds

t

+JN. t . (F-F) ds (27)

r

,lore JV is he surface of V, and we assume that

3 = S t + SF + Si  (28)

Thus, Eq. (26) can be written as:

0 J [N W -_N. (t.I ds- f (F-) Fdv

+ f [NU - t . F] d s + f (NW-N.t.F) ds. (29)

tF

Eventhu,,uji Eq. (29) is appI. icable to ai general 3-dimensional case, an illus-

trat ion of the 2-dimensional case is iven in ig. I. wherein S S and S
' t

-are depicted, and N is in unit 'outward' norma. to W as shown also in Fig. 1.

l0 -

7 It" " .. . .. . .. .. .-



Suppose we consider the cartesian coordinate system: x along the crack

surface, x2 normal to the crack face, and x3 along the crack front, and con-

sider the component along the x direction of the vector identity, Eq. (29).

Let the problem be also a special case in which (i) the crack-faces are free

of tractions and any imposed displacement conditions, (ii) the body forces f

are zero, and (iii) the inertia is negligible, i.e., the problem is one of

elastostatics. In this case, since N, = 0 along the face, we have from Eq. (29),

fB (NIW- NjtjkFkl ) ds fF (N1W- N t jkF k) ds. (30)

BCD AFE

It is this sense of path-independence of the integral on rBCD, and the as-

sociated physical interpretation of the integral, that were essentially

presented by [2]. However, in the general case, i.e., the case in which: any

of the conditions (i) - (iii) above are not satisfied, and, in addition,

the compon Ats in x2 and x3 directions of the vector identity (29) are also of

interest, %e need to r,-examine the above path-independence. For purposes

of understandLng the ;.bove general case, let us apply*the result in Eq. (29)

to a vol e V-V as hown in Fig. 2a, for a 2-dimensional problem and for 3-di-

mensional problem in Fig. 2b. For purposes of clarity in presentation, let us

consider, without loss of generality, the 2-dimensional case. In view of Eq. (29)

we then have, referring to Fig. 2a,

[NW-N.(t.F)] ds + [NW-N. (t.F)] ds - f (f-a) .Fdv

f 561 f234V

+ f [NW-t.FI ds + f [NW-N.t.FI ds

45 45

+ f (NW--t.F ds + F [NW-N.t.FJ ds = 0 (31)
2 12

* Note that the divOrpence theorem cannot, in ienernl, be applied when the volume

integral contain,; a non-inrograble singularity. Thus, when volume V inciudes the
crack-tip, referring to Eq. (N3), q 4 may be of order r - 2 near the crack-tip (front)
and hence non-integrable. Thus the divergence theorem cannot be applied to (Eq. 18)
in the case of V, but only in the case of V-V in the limit -- 0.

Pq



where r5 6 1 is the contour with a unit normal directed inwards (into) V-V

as in Fig. 2a. and are portions of r4 5 where tractions and displace-

ments, respectively, are applied. Similar definitions apply to r1 2 and 't2.

Since the crack is mathematically a surface of discontinuity, it is seen that
N+

N_, which is a unit outward normal to r4 5 is equal to the negative of N,

which is the outward normal to r1 2 . We now write:

JVV p a. Fdv = fV d [ F] y, Do .) dv
C E

'p 6 1 .(

= Jv-v Idt 0 - 2(P O- )~ dv. ( 2

Using the divergence theorem, we further write:

-_ f p ( *._6dv - N (p )ds - N(

V-V P56 1  P2 34

- [( ( u. ) u. u) ]ds. (33)

P 12

Using Eqs. (32) anct (33) Li Eq. (31), we write:

[N(W-T) - N (t.F)] ds - fV of . Fdv + f ( oU.F)) dv
JV-Vc J-Vcf234 fVV_ CEL(

+f( N+ [W+ - W-) (T+-T-)] ds - f [(t.F)+ + (t.F)-] ds

J12  2

f N.[(t - (t.)] ds

-'12

= f [N(W-T) - N . (t.F)] ds. (34)

Note that in the above, considering, without loss of generality, the segment

12 to he of the same length as the segment 45, the integrals on r45 and 12

in Eq. (31) have been combined into a single integral on r 2 alone, with

- - 12 -



appropriate sign changes in the unit normal being accounted for. Further,

the notation for the kinetic energy density, T (1/2 )p o .' has been employed:

and r is now equal to r16 5 with a unit normal acting inwards (into) (V-V )

as shown in Fig. 2a.

We now consider Eq. (34) in the limit when e- 0, i.e. the volume V , and

the contour r shrink to zero. First consider the right hand side of Eq. (34).
C

Let 7 , in the 2-dimensional problem, be a circle of radius C. (In 3-dimensional

problems, we let r be a circular cylindrical surface of radius E, with the£

axis of the cylinder being the crack front). Then,

Lt f [N(W-T) - N . (t.F)] ds
c- O Jp -

C_
+TJ

-Lt f [N(W-T) - N .(r= d (35)
C-0 f

It is seen that the right-hand side of 7-1. (35), for a sharp crack, would vanish

identically unless W (and by dimensional considerations, t.F), and T all have

singularities of the type r (with r,0 being pola7-coordinates centered at the

crack-tip) where 1>l. However, since ihe total strain and kinetic energies in

a small core region near the crack-tip must be finite, it is seen that a must

be equal to 1. Since W is a nonlinear function of F, F can be expected to have

a singularity of type r - B with tl<l; likewise t may have a singularity of type

r ,such that 3+6=i. It is worth noting that available solutions in linear

elastodynamic crack propagation indicate that the material time derivative u

-1/2(or absolute velocity of a material particle) may have a singularity of r

On the other hand, if the crack is stationary, even when the dynamic effects
+1/"

art iccounted Cor, Ci varies as r ][81. Thus, in general, in a dynamic crack

propagation problem, the term on R.R.S. of Eq. (34) is non-zero for a sharp

* 4l



crack, even in the limit as £4O. We denote this non-zero limit as the vector

J. Thus, from Eqs. (34) and (35) we have:

'24 N(W-T) - N (t.F)l ds + Lt (-f p f.Fdv + 6.F dv
2 34 e-+ -V-

+ fl N+ [(W+-W ) (T-T) )I ds f 12((t.F)+ + (Z.F)-] ds
Jr12 12

1l2

= Lt f iN(W-T) - N . (t.F)1 ds (36)
E-O fF

J.

Note that the limit E-O in the term within brackets { } in the extreme left

hand side of Eq. (36) implies that: .a) in the volume integrals, a volume,

however small, near the crack tip must be deleted, and (b) in the crack face

integrals, an area, however small, neai the crack-front must be deleted.

Now, in view of Eq. (39) it is bken that th.' integral on the extreme

left-hand-side of Eq. (36) is path-in.iependent* (Note however, the volume

V-V change for each path). It is worth noting that Eq. (36) implies thatc

the path 234, as in Fig. 2a, begins at the point 2 on the lower flank of the

crack, and ends at point 4 on the upper flank, such that points 2 and 4 are

equidistant from the crack-tip. However, this is just for convenience, points

2 and 4 need not be equidistant; in which case the integrals on r12 in Eq. (36)

must be "split up" into integrals on both F12 and F45 as in Eq. (31).

Evidently, if one uses Eq. (27) and repeats the steps in Eqs. (31-36),

we obtain an equivalent representation for a path-independent integral:

f [N(W-T) - N . s. (2,y+[)] ds + Lt {-f ~ f . Fdv

234
* Note the fundamental difterenc' in the notions ot path-independence as embodied

in Eqs. (30, 39) (which ire due to ['2,41) on the one hand, and the present Eq.
(36) on the other. In Eq. (3h) It implies that the integral on the extreme L.H.S.
evaliiated on the contours F 12 34 or 1 12'3115 (see Fig. 2a) has the same value.



+ J; (Pa. F) dv + f -+[(W+-W ) - (T+-T-)] ds - f (t.F)+
V-V r 12

12 1

+ (t.F)-]ds - f N+.[(s.FT.F)+ _ (s.FT.F) -1 ds J. (37)

12

Trivial as the difference may be from a theoretical view point, Eq. (37) is in fact

more convenient from a computational view point, to calculate J from a far-

field contour, than Eq. (36), since most generally available computer programs

(finite-element!) use s and y as primitive variables Il.

If we consider the special case when (i) deformations are infinitesimal,

and thus the distinction between various stress measures vanish, i.e., t=o, (ii)the

matarial is linear elastic and homogeneous, (iii) the material is under dynamic

equilibrium, and (iv) the geometries of the solid and crack are conveniently

described in a cartesian system, then Eq. (3) is reduced, at any time t, to:

JK= j2 [NK(W-T) - NMa MJ(6jK+uJ,K)  ds

234

" Lt -F P f (6 +u dv + d [) _P(6 uJK )I dvj
C-0 V- o J dt JK J,

E E

+ ' [(W-W)- <(T+T)I ds - f u )> + < (6 K> - ds

12 12

- f N[tJLFLK) + 
- (tjLFLK) J ds. (38)

'" 12

This should be contrasted with the expression for linear elasto-static case,

when no conditions are prescribed on the crack-face, given in [2,4] denoted

here for comparison purposes, as J*:

J (WNK-N Uu , ds .  (39)
K fJ24 K MJJ,K

234

Thus, in the present J, Eq. (38), discontinuities of W and T across the

- 15
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crack-faces*are allowed for, in addition to its being applicable to the general

case as discussed.

It is interesting to note however, that even in the general case repre-

sented by Eq. (36), the following identity holds:

- I NMtMj6 JK + Lt P- f6 JJK

2 3 4  J

o d f <(K) dv-jJK)+ + (jK) >ds

E dt12

Lt -f NMt'6 jKds (40)

E

since, Eq. (40) is nothing other than the global linear momentum balance con-

dition for the domain V-V in the limit e-0. Thus we may reduce Eq. (36),

through a slight modification to the definition of J, as:

[N(W-T) - N . (t.e)] ds + Lt - f p f.edv
234 ~ -O V-V C '-

+ f -~p 6 o ' ) dv + N+ [(W+-W) - (T+-T-)] ds

1 12

12 12

Lt N(W-T) - . (t.e)] ds

=J. (41)

Thus Eq. (41) represents a slight modification to the definition of J in as much

as F in Eq. (36) is now replaced by e[u=F-T].

We now examine the physical interpretation of J as presently defined

through Eq. (41). For this purpose let us consider the volume V at time t.

It is to be understood that V is a small region at the crack-tip (front) with

* Note that, based on physical considerations, we may assume that W and W along
the crack-face, in general. may have integrable Ringularities near the crack-
tip (front). An example wherein (W+-W- ) # 0 at the crack-face has recently been
brought to the author's attention [13].



tne surface r. Let ip be the potential of external forces acting on V, and

let W* and T* be the strain energy and kinetic energy, respectively of V . It
E: E

is seen that

tItf i -v f tids I r f t i(P.i)dljds. (42)

where S is the crack surface(s) enclosed by r. The last term on the r.h.s.

of Eq. (42) is the work of tractions exerted on V by the surrounding solid,

and these tractions are dependent on the displacement field. Likewise, we have:

F ij
*= Wdv f =- tn (p..)d j dv (43)

and

T* f Tdv = ;uu6 dV (44)
C C

where ii. is the absolute velocity of a material particle. In F-s. (42-44) car-

tesian coordinates xk have been used for simplicity. Let ck be the cartesian

coordinates of the crack-tip. Let Ck(=xk-k) be coordinates ctntered at tie

crack-tip when the crack is of "length" ck. It is seen that i general, in the

immediate vicinity of the crack-tip, i.e., in V., which may be considered to

be a "process-zone", we may assume:

u, = i(rkCk' k9) ; tij M tij(k C k' k t)

W = W( kck,t);T = T (k,ck, kt)" (45)

Thus the variables u,, t, W, and T may depend explicitly on the crack "length"

Ck, crack-velocity Ck' as well as time t. It is known that in the vicinity of

a sharp crack-tip (front), the displacements u. are nonsingular (even thoughI

the material velocity i. may be singular), while W and T are singular: and

* based on physical considerations, the singuLarities In W and T can be of order

-17-
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r where r, e are polar coordinates centered at the crack-tip. Even in finite

bodies the representations (45) may be considered as being asymptotically cor-

rect within the "process-zone" irrespective of the geometry of the body and

loading. We may write at time t, for instance,

W= W(CKcK,6k,t) dv (46)

and a similar expression for T* of vC

Now, let us assume that in time (dt) the crack "advances" by dck. Let

Ck be once again, the cartesian coordinates centered at the new crack-tip such

that =rk-dck as shown in Fig. 3. Also, without loss of generality, let c=adck,

>1, such that the crack-tip which is within V (say a circle of radius c centered

at the crack-tip) at time t, will not lie outside the fixe6 V at time (t+dt).

Thus we are considering the case when the crack-tip advances by "dc k" in time

'dt' into a fixed volume V . Analogous to Eq. (46), we may chen write:

W*(t+dt) = fv W(Cck+dck,Ek+dEk,t+dt) dv. (47)

We note that, in the asymptotic sense, the dependence of W on at t+dt for

a sharp crack is, in general, of the same functional form as the dependence

of W on k at t. Note also that in performing the integration as in Eq. (47),

the limits of integratton for a fixed volume V in terms of would, of course,

be different from those in terms of -k in Eq. (46) (see Figs. 3a and 3b). How-

ever, by noting that ' dc and drk=d we have, by what amounts to a
*kk k' wehvbwhtmonsoa

change of variables,

W*(t+dt) = fW[(,.k-dck),(ck+dck).(6k+d k),(t+dt)] dv. (48)

Now the Limits of integration in Eq. (48), would be the same as those in Eq.

-18-



(47). Now, we may expand out the integrand on r.h.s. of Eq. (48) using Taylor

series and express it in terms of W(r k,ck$k,t). However, it is recalled that

-I
W is singular (viz., r for a sharp crack) w.r.t. Ck as Ck 0, where as the

explicit dependence of W on c k and t is in general, non-singular. Thus,

while 3W/3c k , W/36k % and 3W/3t are all integrable, the partial derivative

aW/3rk would, however, be non-integrable. Thus the above idea of changing

variables is non-workable. Thus, we rewrite Eq. (47) as:

VaW aW . W

W*(t+dt) 9Wckc,t) + _- dc + - d6 + 2 dt] dv. (48)
CAf kk9k2 ack k 3E k at

Now consider the term:

I = fV W( kck,ck t) dv - fV W(Ck,ck,k't)dv. (49)

C C

Since the functional dependence of W on and Ck are of the same form, we

can "subtract out" the singularities in evaluating I of (49) as shiwn in Fig.

3c. From Fig. 3c it is apparent that the term I of (49) is given by:

I= - .4 (WNkdck) ds. (50)

C

Note the negative sign on the r.h.s. of Eq. (50) is due to the definition of

the "outward" normal to the contour r in the sense indicated in Fig. 3c. (i..e, ,

a contour beginning at the "bottom" surface of crack and ending on the "top"

surface]. Let us now define the derivative [D( )/Dt]c as the total rate of

change of ( ) in a time "dt" due to crack growth by "dck". Thus, for instance,

DW*
dt= W*(t + dt) - W*(t). (51)

From Eqs. (48), (49) and (50) it is seen that:

DW* S= - WNkdS + r 2c+ W Ck + -) dv. (52)
~Dt 1 kk V J Kk t

"C
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In the case of a dynamically propagating crack, the kinetic energy T may also

have(as is known [81, for instance, in linear elastodynamics) a singularity.

Thus, following essentially the same arguments as in Eqs. (46-50), we have:

DT*
[L]c . (*Tk~d f r 3'T. 31rTN ds+ -ck + - C + -) dv. (53)

Dt fr k k V ac kk kk a

Finally, at times t and (t+dt), respectively, the displacements are given
Du.

by u. and [ui+ (-)Cdt]. From the Equations:

ui(t] = u i(k c k'k t)

and
u[t+dt] = u (,c +dc 6k+d , t+dt)

u.i k' k k9 k dk~tt

= ui (k-dck, ck+dk,' k+d6k, t+dt ) (54)

it is seen that:

Du. au u 3u i

Dt' c k k ac k + (5

Using Eq. (55), it is then seen from (42) that:

Du i .Du I d Du.cd 6) -u t (-) d
= (-u-) dv- i r i -Dt

Ct C

where t. are tractions corresponding to u. at r at t. We will now consider

the "energy release rate" to the crack-tip, as measured in the process-zone,

V C . This energy release rate, denoted here by (DEC/Dt)c , is given, from the

energy balance within V by:

DE D -j DW DT(
(_=) - Dt' I( D_)c + (_Dt)]. (57)

Upon using (52), (53) and (56), we write (57) as:

DE J u. 3u. 3uh.
(-t C [(W+T)N- t , L ds - f dv f it. ds

Dt k k i it, J k 1.

: - 20) --~ k S2- ki" i,-;," ."
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____. 3 , u, ~
f W 'T a - dv t' ds(- ) -

k V C' k + ck T k fr Ciac k ftDek

+ f tts t d

'r ( '+U-, U,

LJ W- I -L -) dv -f t-,-ds - !_d

- C t at i at rC a sea

(I) + (II) + (III) + (Iv) (58)

where (I), (II), (III) and (IV) identify, respectively the first through fourth

terms each enclosed within { }, on the r.h.s. of Eq. (58). Suppose now that

for a dynamically propagating crack, W, T, and tij auj/ax i (note that 3( )/ax
-i

D( )/3 i] all have singularities of the type r . On the other hand, the

explicit dependence of these quantities on Ck' Ck9 and t are, in general, such

that their partial derivatives w.r.t. ck, Ck' and t are also singular, but the

*-1
singularity is still of order r1. Suppose we consider a 2-dimensional problem

wherein V is a circular domain of radius c(-3dc k ) centered at the crack tip;

Jr )ds= f( )cd0 (59a)

E 1

C 1

If )dv = f f ( )rdrdo. (59b)

V E0-fH

Thus, for a 2-dimensional problem (the s;ame argument carries over to 3-dimen-

sional case) for instance, the term (1) of Eq. (58) becomes:

Du.£ +I U

(I) = k [(W-+T)Nk - t1  3' cdO - f i rdrde
-'k (r~r) 0-1

k ~ 0 -il
f °

1(t i + (t -) I (60)
f k -IT ';k +lI0

where S is defined by i f = l. Supposing that t and t are non-singular

-2.1 -
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near the crack-tip, while W, T and tiui,k behave as r , it is seen that the

first term on the r.h.s. of (60) is independent of c, while the other terms are

0(c). Likewise, it is observed that terms (II), (III) and (IV) of Eq. (58a)

are all of 0(c). Thus, in general, we have from (58),

DEE(-D)C = Ck f. [( 4+T)Nk - tiy-'] ds} + 0(c). (61)

Hence, in the limit, we may take for an arbitrarily small volume near the crack-

tip,

DE f au. s

E

f. au.

Ek f [(W+T)N - t i  'I ds. (62a)

kE

Comparing Eqs. (62a) and (41) it is seen that:

DE *~
c+2 TN ds (63)

Thus, in the case of propagating cracks in elastodynamic fields, the path in-

dependent integral Jk of Eqs. (41), and hence Eq. (38), does not have the

physical meaning of energy release rate per unit crack-growth. However,

if we define the "Lagrangean" of the domain V as:

L =- W* + T* (64)

it can be immediateiy seen from Eq. (57), and the development that follows

4
thereon, that:

DL DE DT*rc Lc + 2( '

(- -) = (- + 2(')--

:kJ 1  [(W-T)Nk t i -Xk ds

kJk • (o4b

- --"



Thius the path-independent integral of (41), and hence (38), while not represen-

ting an "energy release", does still have a physically meaningful interpretation

of rate change of Lagrangean per unit crack growth.

On the other hand, for stationary cracks in dynamic elastic fields T is

nonsingular, while, in elasto-statics T is negligible altogether. In these cases,

it can be seen that:

DE
) t = dc J (65)

and thus, Jk does have the physical meaning that it is the energy-release rate

per unit movement of the crack-tip in xk direction.

In the linear-elastic case, an expression for energy-release rate for a

crack extending in an elasto-dynamic field was derived by Freund [7] to be:

F = Lim (ijnj + U + 1 PUiiv )ds. (66)
J iOj j i 2 ij i,jv 2 i in

where, in the notation of (71: s is a "small" loop that moves along with the

crack-tip; aij is the stress tensor; U. are displacements; Ui are velocities,i!
n. are direction cosines of a unit normal to s pointing away from the crack-

tip, and v is the "component of velocity of a point on s in the direction of

n. (if the crack-tip is moving in the xI - direction with instantaneous speed

v, then vn=vn ). In deriving the above expression (66), a small loop of

unchanging geometry was supposed to be moving with the crack-tip and a global

energy rate balance was employed [71.

It is seen that the presently derived expression for energy release rate,

viz.. Eq. (62a) differs from that derived in [7], viz., (66). As demonstrated

earlier, the present Eq. (62a) can be readilv reduced to the well-known results

for energy release rates for elasto-static crack problem as well as for the

elasto-dynamic problem when the crack is stationary. On the other hand Eq.

(66) of [71 is not readily reducible to the above cases, without invoking

- 2-



certain other assumptions.

We now consider finite-strain inelasticity, but restrict our attention

to the two cases: (i) finite strain, classical rate-independent elastoplas-

ticity, and (ii) finite strain rate-dependent elasto-viscoplasticity

including creep as a special case.

Finite-Strain, Rate Independent, Classical Elasto-Plasticity:

Because of the author's own interest in computational mechanics, the

following is presented in a fashion that is directly amenable to computations

based on, say, the finite element method. However, the basic development

itself is divorced from any "computational" overtones, lest they may be deemed

"bad".

At time t, the material particle P of B is located atp in b. At time

t + At, let the same material particle move to pI As discussed before, the

spatial coo7inates in b are n and the convected coordinates are Let the

vector pplbe Au.

J m J*,^u11 Gji = A&u L Au y (67)

We define ne incremet tal-displacement-gradient tensor Ae as:

m n
Ae Au y-ge =Am;ng

m n

(Ac _) g (68)

where A, and Aw are, respectively, the incremental strain and incremental spin

"- referred to the current configuration at t and,
n firn I (g gn mn

Ac I -(,u +All ) Aw (%u Au m n (69)
2 m;n ;m mn

In the above and in the precedincz, ( ) ; and ( );j refer to covariant deriva-

n J
tives(w.r.L. n and respectively it p, using the ,s'trIL" gmn, and g.JK res-

pectively) in the current contigurat.ion. Let the Cauchy stress and Kirchhoff

stresses, T and j3 respectively, at time t be represented as:



T-=T M A JK 
0 JT = = J*K*

Let Aa be the total, or substantial, or material increment of Kirchhoff stress,

such that,

_ m n

Ao = t= ( )At(71)

where is the material derivative (for a fixed material particle, J =

const.), of a. For an objective stress-rate, to be used in the incremental

constitutive relation for an elastic-plastic solid, we take, following Hill

R4], the co-rotational increment of a (which is often referred to as the

Zaremba, or the Jaumann, or the rigid-body rate), which is denoted here by

Aod. It is well-known (see for instance 14]) that

A (2
Ac = AG + a AW - AW . a.(72)

A constitutive law for the rate-theory of plasticity, as suggested by Hill

[14] is:

3ACA = h---- (73)

where

AV = L ACmnAPq ( ) 2 (74)
2 mpq g k )

Eq. (74) leads to a bilinear relation. In Eq. (74): L is a tensor of in-

stantaneous elastic modulii, which is + ve definite and symmetric under mnn-pq

interchange; =l, or 0 according to whether :Af is + ve or - ve, Xmn

is a tensor normal to the interface between elastic and plastic domains in the

strain space, and g is a scalar related to a measure of rate of hardening due

to plastic deformation. For classical isotropically hardening materials,

the above constitutive law, which has been used by several authors in the

past few years, as discussed in[[5l, becomes:
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12ap2 (AC:o')o

Aa = 2vAe + X(Ac:I)I - (75)
S(o,:cr,)[6w+2(0F/3wP)]

1
where X and p are Lame's constants; 1' = a - -(a:I)I is the deviatoric

Kirchhoff stress at p, and the yield-surface is represented by: F = [3J2(WM

- F (Wp ) = 0; Wp = fa:AEPdt and J2(a') = (i/2)(o':a').

For purposes of the ensuing discussion, it should be noted that the con-

stant a (which is equal to 1 or 0) in Eqs. (74, 75) is a function of the spatial

m
coordinates n in b. Thus, a generic point p in b may be experiencing loading

(a=l) or unloading (=0). Thus at time t, a depends on the location of p in b.

Let (-+At) represent the first Piola-Kirchhoff stress at p1 at time (t+At),

as referred to the configuration b at time t. Then it is seen [151 that:

At = (Aa-Ae.a)/J (76)
= - ./ (77)

where J=(po /p t) the ra io of mass densities in B and b respectively. Use has

been made of Eq. (72) ;n obtaining (77) from (76). Hence, in view of Eq. (73)

it is seen [15] that' a potential AJ exists such that:

MA U---- = At (78)

9A q

and AU = AV - a: (Ae.AE) + a: (AcT.Ae) (79)
2

Note AU = AU[a(p)], i.e., AU is a function of c(=0 or 1) which is in turn

a function of p.

Let a be the absolute acceleration (i.e., the material derivative of the

velocity vector), of the material particie at (t+At). The acceleration a can

be expressed in terms of spatial bases k at t, or sometimes more conveniently

(from a computational viewpoint) in the CLxed b.is's (G it 1P at t=O. (see, for

instance, [151.) The field equations at t+At can now be written as:
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(LIB) V t [T+At] + p (f-a) = 0. (80)

(M~B) Ae T r+ At =At T + T . Ae T (81)

At 3 AU/3Ae T Ae =Au M; n-fmRl (82,83)

nPt [T+At] at S t (84)

and Ae=Ae at S e (85)

Note h t ,. =m( 3/3flm) is the gradient operator at p at time t. In the

above, t are prescribed tractions at (t+At) as measured per unit area of surface

St at time t. It should be noted that when the potential AU for At is as defined

in Eq. (79), the NB Eq. (81) is automatically embedded in the structure of AU,

as discussed in [151.

Now we show that for a closed volume v' (at time t) wherein ci=constant
t

(i.e., a volume which is everywhere experiencing loading or everywhere exper-

iencing unloading), and wfiich is free fron any singularities or other defects,

the following vector integral is zero.

v I 1~(,:Ae+AU) - (Vt A _ [(T+A,.) .Ae)

p- p(E-a) . Aeldv + fS [n . (T+At) -ti Aeds

t

+ f n . (.r+At) .(Ae-Ae) ds. (86)
S

Note again that, in general, AU = AU~xp)] but, within the considered v.

a = constant =I or =0. The proof of the above statemenit is based on the

results:

[i :Ael (V i) : Ae + [T : ) (87)
-t -t-

V' AU At T (Ae) g m (88)
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Since,

V ta(p) = 0 for considered vt  (89)

V . [(T+At) . Ael = iV. (H+At)) . Ae + [(T+At)T : (Ae);m (90)

From Eqs. (87-89), (80), and (82-85), the validity of Eq. (86) is immediately

evident.

For instance, in a 2-dimensional dynamic elasto-plastic problem, con-

sider two pathi e* and r* surrounding the crack-tip as shown in Fig. 1.1 2

We note that within the region (v ) enclosed by P*, there can be regions
1t1

of both plastic loading and elastic unloading, i.e., a can be either 1 or

0 at various points within (vl)t. However, within the region (v2-v )t, i.e.,

the region between the paths fr* and F*, there can be either only loading or1 2'

only unloading, i.o., within the region (v2-vl)t, either O=Ionly or a=O only. In thisi

case, we have in view of Eq. (86):

0= f ' V(T:Ae+AU) - (Vt) : Ae - V . [. 6e]
- J~ 2 -v) -1 e

- (f-a).Ae! v+ [it.(r+At)-t].Ae ds+ t .(T+At).(Ae-Ae)ds (91)" f 2 .. ..

tl (S)

Recall that in the case of an elastic material, the basic result of vanishing

of a certain integral in a volume free from singularities, i.e., Eq. (26), was

applied to a region V-V , and the integral vector J was defined as the non-

vanishing limit of a contour integral on I' in the limit c-O, as in Eqs. (36)

or (41). Note that Eq. (91) of the elasto-plastic case is entirely analogous

to Eq. (26) of the elastic-case. However, in order for Eq. (91) to apply to

the region V-V in the limit c-10, the entire region (V-V limit c-0) must under-

go either plastic loading only, or elastic unloading (or remain purely elastic)

only. Such a situation is, in general, unlikely in the case of (growing) cr!cks

in ductile materials, for a general domain V-V . If indeed these ':onditions

*For convenience, T\FE and rBCD of Fig. I are fiow renamed F~and r4, respectively



are met, and hence Eq. (91) is applicable, in the domain V-V (Lt e-O), then

results entirely analogous to Eq. (36) or (41) can be derived, and a vector

which is the limiting value of an integral on PC in the limit c-*O can be iden-

tified. However, in general, let us consider the case when the conditions

for applicability of Eq. (91) are not met in V-V (Lt e-O) i.e., V t (p)#O in
Et

V-V . Referring to Fig. 1, it is seen, in the limit c+O,

tt[ _VI I|Vt(:Ae+AU) - (V tr):Ae - V . [(T+At) . Ae]E-g) -V - - -t ~ ~

- t (f-a) .Ae I dv + fS ) 2 (i+At) - ti.Aeds

tC

+ f( )2 n . (T+At) . (Ae-Ae) ds] # 0 = R (say) (92)

e )C

where R can be seen to be an integr 1 over V-V of terms involving V ta(p).

Using the divergence theorem we can :ewrite Eq. (92), for instance, for a

2-dimensional domain indicated in Fi. 2a,

f (11 (T:Ae+AU) n . < (TL). eId + Lt[VTAf234 -+ C0If-VE t

- t . Ae dv + n [(I:Ae+AU)
+ - (T:Ae+AU) I ds

12

- -- + -- I
S 2[(.'Ae)+ + (j.Ae)-] ds - ,n <(I+At) . Ae> - <(T+At). Ae> Ids

-2 12

= R+ Lt f [n (i:Ae+AU) - n . <(T+At) . Ae'I ds.

AT (say). (93)

It is noted that comments, concerning I' i2 r1 etc., essentially similar

to those made in connection with Eq. (36) apply in the case of (93) as well.

In view of Eq. (91) it is seen that the integral on the extreme L.H.S.

9



of Eq. (9 3)is "path-independent" (however the enclosed volumes V-V will be dif-
C

ferent) for any two paths r234 and r2,3,4, between which there is entirely loading

or entirely unloading i.e., a-1 or a=O everywhere between the two paths. Speci-

fically, consider the situation when: (i)r2 34 encloses a volume VI (including

the crack-tip) where there may be both loading and unloading taking place and

(ii) r213,4 1 encloses a vdlume v2 such that in v 2-v also, both loading and un-

loading are occuring. Then the vector integrals (AT)1 (involving r23 4 on the

extreme L.H.S. of Eq. (93)) and (AT)2 (involving fr2 ,3 14 ,)will not be equal.

On the other hand, in the situation when (i)P2 34 encloses v1 wherein there

may be both loading and unloading occuring and (ii)F 2 ,31 4, encloses v 2 such that

in (v2-v1 ), either only loading or only unloading (or remain elastic) is taking

place, the integrals AT and AT are equal:
-1 -=2

It is noted that Al integral as evaluated on r234 fromEq. (93) "measures"not only

the severity of conditionq near the crack-tip, but also the effect of transition

from plastic to elastic zones in V-V enclosed by r234'

Now we shall consid r the physical meaning of the AT integral introduced

in Eq. (93). First, we , te by the definition of the potential AU,

:Ae + AU = T :Ae + _ AtT  Ae
2 -- 2-I

= (T+ At : Ae 5 AW (say). (94)

Thus AW is the total stress-working density increment during the time interval

t to (t+At). As shown in [14] and [15] we may write AWin an alternate form,

using the conjugate variables As and Ac, where As is the incremental second

Piola-Kirchhoff stress such that (T+A,) is the total second Piola-Kirchhoff

stress at time (t+At) as referred to the configuration at t. Thus:

AW = (T+ - At ) :Ae

L. T
S(T+4 ~- , s) :AL + T (AC .w

2- 10-



AS A) : AE. (95)2 -! -

Recall that T and As are both symmetric, and the symmetric Ac is the incremental

strain between times t and t + At as referred to the configuration at t. Using

the additive decomposition:

Ac = Ac + AE (96)
- ~e -p

where the subscripts e and p refer to "elastic" and "plastic" parts respectively,

we see that:

T : e + AU s AW = (T+ - As) : (AE +Ac )2 _e -p

AW + AW . (97)e p

Where AW is "elastic" part of incremental stress-working density (per unite

volume at time t) and AW is the plastically dissipated portion of incrementalP

stress-working density. Let AK be the incremental kinetic energy, between t

and t + dt, per unit volume in b. It is seen that:

AK = o a . Au. (98)t-t-

To simplify matters, let us consider: (i) a "mode I" 2-dimensional problem,

wherein the crack-faces are free from ;,ny applied tractions or other constraints,

(ii) the body forces to be zero, and (iii) the crack is along the x1 axis.

Consider a volume "1*, in this 2-dimensional problem, which is enclosed by the

contour F as in Fig. 2. Let AT ,. AW*, znd AK* be the incremental potential
234 1 ' 1

.* of external loads, incremental internal energy, and incremental kinetic

energy, respectively, of the volume V*. It is seen that:

AW* = /I AWdv = [T:Ae + AUJ dv (99)

AK* =f AKdv = a Audv (100)
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Au

and Ar=-f f fnj [,i + At(i)0 dpli ds (101)

234 0

IF4r1+5 [jn [Tji + At ji (IJi )] diil) ds

fr234 +r12+ r54 0
since the crack faces are traction free. To simplify the discussion further,

we shall consider only the case of a stationary crack, of length "cl" The

combined incremental potential energy between t and t+dt for this cracked body is:

AEI = -Alp - AW* - AK* (102)

1 1 1 -1

Now, let us consider a second cracked-body identical in geometry to the

one above, but with a crack of length "c 1+dcl" Let the second cracked body

be subjected to a load history that is identical to the one to which the first

body has been subjected to. In the first body, let the cartesian coordinates

measured from the crack-tip be Ci = xl-cl, and 42=x 2. We will consider in the

second-body, a contour which, with reference to the boundaries of the body,
234

is identical to the contour r234 it the first body. In other words one may say,

equivalently, that we ire consideting identical domains V* in both the bodies
2

except that the leng~is of cracke. enclosed by the contours r23 4 and r

respectively, differ by an amount dcI. Let r' be the cartesian coordinates

centered at the crack-tip in the second body: j =  -dc,; C = C2 = x2 " Since

both the bodies, differing in crack-lengths by dcl, have been subject to iden-

tical load histories until time t, one may assume:

T =t ( t=a(

in body 1: ij i k) t '

Au Aur k ) AW - AW( k)

Tij= Tij(rk); at = t(rk)

in body 2:
Au = Au(,') ;AW = AW(r')l (103)

k 3 k
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The combined incremental potential energy in body 2 would be:

AE 2 = -A 2 - AW - AK* (104)

where,

AW* = v AW(C) dv (105)

2 fVt

AT* = p a (C') . Au ) (106)

2= f +r +r f n. [Tji( At ji(Vi) di iids (107)
d234+ 12+ 54 0

Integrals in Eqs. (105-107) are identical to those in Eqs. (99-101), respectively,

except that the limits of integration which are w.r.t. ck in Eqs. (105-107) are

diffecent from those w.r.t. rk in Eqs. (99-101). By using arguments analogous

to those employed earlier in L'nnection with finite elasticity, it can be shown

that:

AW* - AW*=-f nldc 'Wds. (108)

234

Note that singularities, if an", in AW ne:ir the crack-tip have been permitted

in both bodies. Since the crack is assumed to be stationary, one may assume

that neither a nor Au are singular, and write:

AT* - AT* f* (pa .Au)dcldv (109)

MAu
Au(r) Au [(r,-dc )r =Au(C) - dc (10)

- k - 1 1 '2 k ~l 1(10

Finally,

3T 3Au

A + n Au + (Ti+Ati) i 1dcds.(111)f, 234 +r12 +r45 i [i 3¢ 1  I (? I

Thus, the difference in incremental total energy, in the time interval t to

t+dt, between the two bodies is:
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AE -AE n A u +Tt ds

+ NIAWdv + ---- (p .Au)dv. (112)
2 3 4

However,

n Au V),dv

ir Jv*
J2 34+F1,2+ T45n l*

,V ji,j 1 1 &u~ ji,l iu,J 
d v

In writing Eq. (113), it is assumed that T is non-singular near the blunted

crack-tip in an elastic-plastic materials for which stress saturates to a

finite value even for large strains. It is recognized, that at time t the linear

momentum balance condition is:

= p(ai) t  
(114)

or (T jil ), = [p(ai)t],l. (114a)

Using Eqs. (114a) and (113) in Fr. (112), it is seen that:

DAu.

AE2 - AE 1 = [nlAW - n (Tji+Atji) I I ds
2dc 1  =f 234 1 ac

+ [-TjiIAUi,j + p(ai) t D- i dv. (115)

Comparing Eq. (115) with the extreme left hand side of Eq. (93), it is seen

that

AE 2 - AE 1 = AT I

dc

where AT I is the x1 component of the path-intccraL vector defined in Eq. (93). Thus,

in general. it appears that the AT inteo:rai of Eq. (',3) has the meaning: it is the

difference in combined incremental potential energy (1~er unit crack length difference)

in the time interval t to t+dt of two bodies which are identical in shape and load
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history, but differ in crack lengths by 'dc k'.

Note that in the derivation of Eq. (115), no assumption has been made

concerning any loading/unloading conditions within V*. We now consider certain

cases of cracks in rate-sensitive inelastic materials.

Rate-Sensitive Inelasticity:

A rate-sensitive constitutive law of considerable generality, as given

by Perzyna [llI,can be written for finite-strains, when an associative flow-rule

is used, as:

a ?F (116)
(F)>3

where <> denotes a specific function, such that <> = O(F) for F>O, and

0=0 for F<O. The parameter y is called the fluidity parameter and 6a is the in-

elastic strain rate. Various forms o' 4 were reviewed in [Il1. For the Hencky-

Mises-Huber type yield criterion, onE can define t to be:

3
F = [3J(') - F - a - F0 = ( :a, F -0 (117)

where a is the equivalent Kirchhoff stress. A simple choice for (F) can be:eq

O(F) = Fn. (118)

If in Eq. (117), one sets Fo=O, the viscoplastic strain-rate relation (116)

leads to:

.a 3 n-i,
-aj 3 ( ) a:.. (119)

ji 2 eq j

Defining the "equivalent" creep strain rate as:

2. .a 
(120)

eq i3 iji )
2 

(120)

it is seen from Eq. (119) that
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eq eq

which is the well-known power-law for steady-state creep. If i is the co-

rotational stress-rate (=Aa/At) the constitutive law can, in general, be wri-

ten as:

a
= L :( _-a) (122)~ :e ~- ~

where L is the tensor of instantaneous elastic modulil, and a is the strain-ze

rate under viscoplasticity, or creep, respectively, as given in Eq. (116) or

(119). Thus,

t +At
S ad

Aa = Le :Ae - Le: ft. (123)Z e ~ e t l

From Eq. (123), it is seen that a potential AV for an elasto-viscoplastic

solid, analogous to that in Eq. (73), can be constructed [161. Using Eq.

(77), a potential AU for At, in the case of viscoplasticity or creep, analogous

to that in Eq. (79), can be constructed. The main points to be noted however,

are: (i) in the case of an elasto-viscoplastic solid AU will be an explicit

function of position of the material particle, since < (F)> is non-zero or

zero (depending on F>O or <0) at a given location; (ii) in the case of creep

AU will not be an explicit function of location of the material particle.

From the above discussion, it is evident that in the case of cracks in

elasto-viscoplastic solids, an incremental integral vector, AT, entirely

equivalent to Eq. (93) can be defined. Moreover, it is also evident that the

AT integral in the case of viscoplasticity is path-independent in the same

limited sense as discussed earlier in connection with rate-independent elasto-

plasticity.

* On the other hand, in the case of creep, described by a constitutive

law of type (119), since AU is not an explicit function of position of the
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material particle, we have the result, analogous to the case of finite elastic-

ity, that R=O in Eq. (93).

Thus, in the case of creep, we have, for instance in a 2-dimensional case,

the following result instead of Eq. (93):

F [n(T:Ae+AU) -n . <(T+At) . Ae>]ds + Lt I f_ -V :A

2 3 4  C

- t (f-a) . Ae]dv + f + [(:Ae+AU)+ - (T:Ae+AU)-]ds
12

[(t.Ae)+ + (t.Ae) ]ds A ~ -zA). - <(T+At).Ae> dsj

12 12

= tt f [n(T:Ae+AU) - n . <(T+At) . Ae>Ids

F AT (124)

;,,ere AT , the incremental vector for the case of a crack in a creeping material,-c

is once again, by definition, the non-zero limit (in the limit c-0) of the

'ontour integral oi P as in Eq. (124). The far field evaluation of AT

should be . rformed as per the contour/volume integrals appearing on the

extreme L.H.S. of Eq. (124). Once again, it is evident that since AU is not

an explicit function of location, the integral appearing on the extreme

L.H.S. of Eq. (124) is strictly path-independent (eventhough the enclosed

volumes V-V change). Further it is seen that the AT integral in the case

of creep, characterizes the severity of crack-tip conditions.

Consider the application of Eq. (124) to the special case: (i) body

forces including inertia are negligible, (ii) the crack-faces are free from

any prescribed conditions, (iii) the crack is aligned with the x1 axis and that

we are interested only in the xI component of the vector AT . Under these

• ,restrictions, Eq. (124) becomes:
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[nl(:Ae+AU) - j ( +At ) a Ids- Lt J dv234 F-0 -V C X 1 x

3 Au.
Lt J (nl(r:Le+U)- n. (T ji+Atji) - "Ids

(AT1 ) c . (125)

Once again, it can be shown that (AT ) is the difference in incremental total

energies during t and t+At of two bodies identical in shape except differing

in crack-lengths by 'dc1 ', both of which have been subject to identical load

histories upto time t.

We observe that Landes and Begley (101, and Goldman and Hutchinson (91 in-

troduced a parameter c* defined as:

a 1.
c f [W*dy - Ti 'Ids (126)

to correlate creep crack growth rates in "Mode I" where r is a far-field contour

[analoLous to r234 in Eq. (125)1 and

W*= mn orjd6. (127)

0
we nite that the above parameter was introduced in [9, 10] based primarily

on the observation of the essential similarity between the pure power-law

hardening type (deformation-theory-of plasticity) constitutive relations between

the strain and stress on the one hand, and the steady-state creep relation of

the power-law type between the strain-rate and stress on the other.

The present parameter (AT 1 )c, of Eq. (125), however, accounts for elastic

as well as creep strains (using the decomposition, Ac = Aee +AEc where super-

scripts e and c stand for "elastic" and "creep"), finite deformations, and is

valid even under non-steady creep conditions. The path-independent nature of (ATI)

is in Eq. (125) is evident from previous discussion. With the definition of
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(AT )c as the limit c- 0 of the contour integral r', the local nature of

(AT1), i.e., its role as a parameter quantifying the crack-tip conditions is

evident.

Under steady-state creep conditions, it is seen that (AT1)c of Eq. (125)

reduces to (6TI) where,
t Au

(AT Lt f [n(T:i.- n (-ri) i] ds (128)1 c E- O f 1ji ax.

r

or T = 50 [n (: ) - n.(rji) ax ds (129)

r
E

on the other hand, C* of Eq. (126) can equivalently be written as:

C* [of wy T ds (130)

E

where

W* Jmn oi dij (130b)

Thus, een under steady-state conditions, the present (T ) differs from C*

of [9,10], in that; while T: occurs in the former, W* occurs in the later.

It is noted that while T:6 has the physical interpretation as the stress-working

rate, W* is simply a mathematical potential for olj under steady-state creep

conditions. Thus while ( still has a physical interpretation as discussed

earlier, C* does not, in general, have a physical meaning. These and other

topics relevant to the use of (AT1)c and C* are more elaborately discussed in

(171.

* -3
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